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AbItnct-Experiments are performed to detenDiJle the dIpeDcIeace of kniorIIl and bending
riJidity upon diameter for rocI-1bapeci specimens of deDte polyurethaDe fOllm and syntactic
foam. Results show an effect due to·the microstructure. Results are describable by a Cosserat
elastic model. The six Cosserat elastic constants are detenniDed.

1. INTRODUCTION

Materials with microstructure may possess dearees of freedom in addition to those of
an ideally homogeneous medium. Etl'orts to incorporate some of these degrees of free
dom in continuum theories include the landmark 1909 monOlfllPh ofthe Cosserat broth
ers[l], as well as recent articles by Mindlin{2, 3], Bringen[4] and others. In the Cosserat
(micropolar) theory, the local rotation of points is postulated to be an independent
kinematical variable not necessarily equal to the macrorotation determined from the
gradients of the displacements. The correspondiDa dynamical variable is the couple
stress or couple per unit area upon a differential element.

The constitutive equations for an isotropic Cosserat solid are as follows:

tid = AI".a1d + (2JA. + K)tld + Ktld",(r", - +",),

mid = a+,.,,.&k/ + ~+k,1 + 'Y+/k

in which tkl is the (asymmetric) usual (Cauchy) stress tensor, eld is the small strain,
defined in terms of the displacements u: ek/ = t (Uk.1 + UI.k), r is the rnacrorotation r",
= t emlnU·n.1 in which e",'n is the permutation symbol. mid is the couple stress tensor,

«I» is the microrotation, and a, 13, 'Y, K, JA., Aare elastic constants. Classical elasticity
is obtained as a special case by allowing the frrst four of these elastic constants to tend
to zero.

Few experimental studies which intend'to explore the possible applicability of
Cosserat and other generalized continuum theories to real materials have been at
tempted. In metals such as steel[5] and aluminum[6], experiments disclose purely clas
sical behavior. A model particulate composite[7] intended as a possible Cosserat solid
was also found to behave according to classical elasticity. Preliminary one-dimensional
results[8] sUllest a restricted form of Cosserat elasticity, couple stress theory, may
apply to a polymeric foam. Human bone, a natural fibrous composite, displays size
effects in torsion and bending which are consistent with Cosserat, rather than classical
elasticity[9-11]. Bone, however, is structurally and elastically anisotropic, which com
plicates its analysis. Recent study of a low-density polymeric foam discloses nonclass
ical effects which can only be approximately modeled by Cosserat elasticity; it appears
that this material has additional microdeformational degrees of freedom, not included
in the Cosserat theory[12].

The present paper is intended to experimentally explore the microelastic behavior
of two dense isotropic porous materials.

2. MATERIALS AND EXPERIMENTAL METHODS

Two structured materials were examined. The first, a syntactic foam, consists of
hollow alass microbubbles embedded in an epoxy matrix. The density is 585 kglm3 ,
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Fia. 1. Top: Polyure~ foam, retlected liIbt microp'aPh. Scale mark, 0.25 mm. Bottom:
Syntactic foam, reflected liIbt micfOll'llPh. Scale mark, 0.25 mm.

and the voids raIlle in size from about 0.070 to 0.180 mm. The second material is a
high-density rigid polyurethane closed-cell foam. Its density is 340 kalm3

• The voids
in this foam are from 0.050 to 0.150 mm in diameter. Foam microstructure is shown
in Fig. I.

The basis for the experiments is the size effect predicted to occur in the torsion{7]
and bending{13] of cylindrical rods of a Cosserat solid. Specifically, classical elasticity
predicts that the torsional and bending riaidity of rods is proportional to the fourth
power of the diameter; in contrast, Cosserat elasticity predicts that rods of small di
ameter will be moreriaid than would be expected on the basis of the riaidity of a
specimen of large diameter. By measuring both the torsional and bending rigidity of
cylindrical rods as a function of diameter, it is possible to calculate all six Cosserat
elastic constants of an isotropic solid.

Methods based on size effects have been used by others in attempts to investigate
microelastic effects. These methods differ from the present approach in that [5] and
[6] used one-dimensional techniques capable, at most, of revealing one nonclassical
constant. Gauthier's approach[7] is capable of determining all six Cosserat elastic con
stants, but it requires at least two different kinds of specimens and three apparati: one
for tension tests, one for torsion tests on rods, and one for bending tests on plates.
The present approach makes use of the same apparatus for both the bending and torsion
experiments.

Specimens were rough-cut on a bandsaw into a prismatic shape, and were turned
down to right circular cylindrical form on a lathe. Specimen surfaces were finished on
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the lathe by means of cloths and papers impregnated with graded abrasives. Each
specimen was tested as described below, and then machined to a smaller diameter and
tested again. The length-to-diameter ratio was held approximately equal to five during
this procedure. When the specimen diameter became sufficiently small, eel 2 mm, fur
ther machining was done solely by the abrasive method. Specimens as small as 0.3 mm
in diameter could be prepared in this way.

Experimental apparatus intended for such size-effect studies must admit specimens
with a wide range of rigidities, and frictional errors which would obscure the properties
of slender specimens must be eJiminated. In addition it is desirable that the same con
figuration be used for both torsion and bending of the same specimen, so that apparatus
calibration is identical for both. The apparatus shown in Fig. 2 meets these require
ments. The torque is produced by the action of an electric current in a Helmholtz coil
upon a permanent magnet cemented to the end of the specimen with a cyanoacrylate
adhesive. The angular displacement of the specimen end is determined using a laser
beam reflected from a mirror cemented to the specimen or to the magnet. Earlier[12]
we discussed the method of magnet calibration, and described an approach in which
the laser beam was projected to a distant screen to determine the angular displacement.
In the present study we use an interferometric method for angular displacement meas
urement. The laser beam passes through a Ronchi ruling, 300 lines/in., designated by
A in Fig. 2; interference fringes thus produced are reflected from the specimen mirror
and pass through an identical ruling located at B. The second ruling is located so that
its line spacing exactly matches the spacing of the fringes in the laser beam at that
point. As the specimen-end rotates, the fringe pattern moves, generating an oscillating
light intensity behind ruling B. A light detector consisting of a photodiode, mounted
behind a narrowband interference fIlter, transforms the light signal to an electrical
signal. The filter passes only the laser wavelength and excludes room light. One fringe
corresponds to 140 x 10-6 rad. Resolution is 0.05 fringe or better. Typical torque and
angular displacement waveforms are shown in Fig. 3. In the configuration shown in
Fig. 2 the magnet torque is such that torsional loading occurs. To perform a bending
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Fig. 2. Experimental apparatus.
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Fig. 3. Oscilloscope trace for a dynamic experiment at 10 Hz. Top:· Fringe signal for angular
displacement determined interferometrically. Bottom: Voltage across feedback resistor, pro
portional to the torque applied to the specimen. The phase shift between the torque and angle
signals is due to viscoelasticity of the specimen, which differs from the ones discussed in the
text.

experiment, the Helmholtz coil is rotated 90°, and the rulings are correspondingly
rotated.

The upper end of the specimen is cemented to a framework of !-in.-diameter alu
minum rods Which also supports the laser and light detector. The framework is isolated
from vibration by dampers consisting of three layers of soft foam alternating with 40
lb lead weights. One such damper supports each leg of the laboratory table which
supports the framework. A similar damper isolates the frame from the table. The rigidity
of the framework was found to be much greater than the rigidity of the largest specimens
studied.

The apparatus is capable of creep, dynamic, constant-load-rate and resonance
experiments, depending on the electrical signal input to the Helmholtz coil. In this
study, dynamic experiments were conducted at several frequencies well below the
resonant frequency; several creep experiments were also done. Specimen temperature
was 22.0° ±OSC. The bipolar operational aplplifier/power supply was prepared as a
current amplifier, so that the coil current followed the driving signal from the function
generator independently of any resistance changes which might occur in the coil. The
voltage across the 1-0 feedback resistor was input to the oscilloscope and chart recorder
as proportional to coil current, hence to torque.

In the bending experiments the bending moment, due to the weight of the magnet,
is a potential source of error. A correction factor was calculated, based on a simple
beam-theory model. If the correction exceeded 1%, a smaller and lighter magnet was
substituted. To ensure that no calibration error occurred, torsion tests on the same
specimen using first the large magnet, then the small magnet, were performed. The
results of these tests agreed to within 1%. The overall relative error in determining the
rigidity is estimated to be 1% over the size range 1.4-9.6 mm. This is the size range
used in the experiments on the polyurethane .foam. For specimen diameters from 1 to
0.3 mm (syntactic foam) a larger error, ca 5%, is estimated for the rigidity. Most of
this arises from uncertainty in the specimen diameter.

Two magnets were sufficient in the present experiments: a high-intensity samarium
cobalt magnet of diameter 19.05 mm, thickness 6.4 mm and mass 14.93 gm, and a ferrite
magnet of diameter 9.51 mm, thickness 2.96 mm and mass 0.998 gm.

3. RESULTS

Size-effect results, plotted as rigidity divided by the square of the diameter vs the
square of the diameter, are shown in Figs. 4 and 5. Rigidity J is defined as J = Tz/e,
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J/d
2
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F~g. 4. Size~ffect be~vior of polyurethane foam.. Rigidity/square of diameter vs square of
diameter. Pomts: expenmental results at 0.1 Hz. Solid lines: best-fit Cosserat elastic theoretical
curves. Dashed lines: classical elastic theoretical curves.

in which T is the applied torque, z is the specimen length, and eis the specimen angular
displacement. These results are based on dynamic experiments at 0.1 Hz. The slope
of the rigidity plot is the effective Young's modulus for bending, or the effective shear
modulus for torsion. In a classically elastic material, these moduli are independent of
specimen size, so the plot becomes a straight line through the origin. In a Cosserat
solid, the form of the rigidity plot depends upon the six elastic constants. Theoretical
plots are given elsewhere[l2, 7].

Analysis and interpretation of size-effect results is facilitated by using the following
technical elastic constants:

Young's modulus (N/m2)

Shear modulus (N/m2
)

Poisson ratio (dimensionless)
Characteristic length, torsion (m)
Characteristic length, bending (m)
Coupling number (dimensionless)
Polar ratio (dimensionless)

E = (2J.L + K)(3)' + 2J.L + K)/(2). + 2J.L + K),
G = (2J.L + K)/2,
v = )./(2). + 2J.L + K),
I, = [(~ + 'Y)/(2J.L + K)]ll2,
Ib = [oy12(2J.L + K)JlI2,
N = [KI2(J.L + K)JlI2,

'" = (~ + 'Y)/(a + ~ + 'Y).

The above Young's modulus has the same meaning as in classical elasticity in the
case of a simple tension test[7], in which there are neither microrotations nor couple
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Fi~. 5. Size-ef:Tect behavior of syntactic foam. Rigidity/square ofdiameter vs square ofdiameter.
Pomts: expenmental results at 0.1 Hz. Solid lines: best-fit Cosserat elastic theoretical curves.
Dashed lines: classical elastic theoretical curves.
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stresses. In bending, if the rod diameter greatly exceeds the characteristic length lb.
the rigidity becomes indistinguishable from that of a classically elastic rod of modulus
E. The characteristic lengths govern the specimen size scale, at which deviations from
classical elasticity, e.g. stiffening effects, begin to be observed. For example, to observe
a 10% stiffening, the specimen diameter must be about 16 times the characteristic
length[7]. Analytical studies of materials with idealized structures predict that the char
acteristic lengths should be comparable to some length scale associated with the mi
crostructure. The coupling number N, which can have values between zero and one,
determines the strength of coupling between the displacement and local rotation fields.
The case N = 1, for which many Cosserat effects are predicted to be maximum,
corresponds to the "couple stress theory"[l4, 15].

The results for the polyurethane foam (Fig. 4) are consistent with the following
technical elastic constants: G = 104 MPa, It = 0.62 mm, N 2 = 0.04 and Ijs = 1.5 for
torsion; E = 299.5 MPa, Ib = 0.327 mm, N 2 = 0.04 and v = 0.44 for bending. The
residual error, defined as the sum of the squares of the deviations between the exper
imental and theoretical values, is as follows, in scaled units of (kN)2: for torsion, 0.5287
using the above Cosserat model, and 91.16 using a classically elastic model; for bending,
5.697 Cosserat and 58.59 classical.

In the present method the torsion and bending data must be internally consistent
for a single set of six constants to adequately dc:scribe the data. For example, E and
G may be used to calculate v as in the classical case, and the shape of the bending
theoretical curve depends upon v. In addition, the torsional and bending characteristic
lengths It and Ib , determined from the offset between the best-fit curve and a line of
the same slope through the origin, determine ~/"Y uniquely. The ratio ~/"Y, however,
governs the shape of the bending curve in the vicinity of the origin. Only for the values
~/-y = 1 and ~/-y = -1 does the theoretical bending curve pass through the origin. The
coupling number N influences the shape of both the torsion and bending theoretical
curves. Specifically, for Ijs = 1.5, its maximum thermodynamically permissible value,
N governs the maximum apparent stiffening of thin specimens in torsion. Similarly in
bending, for ~/"Y = 1 or ~/"Y = .....: 1, the extreme allowable values, N has the same
effect. For Ijs < 1.5 and for :- 1 < ~/-y < 1, the limiting stiffening effect for small specimen
diameter can become large in torsion and bending, respectively, even for small N.
Physically, arbitrarily large stiffening effects are not to be expected, since any contin
uum theory will break down if the specimen size becomes equal to or less than the
structure size.

Nevertheless, maximum stiffening effects of a factor two have been observed in
thin (I-mm diam) specimens of human bone[lO, 11], and a factor 3.5 in 0.6-mm-diam
microsamples[l6]. The maximum stiffening effect, Le. the ratio of the rigidity of a thin
specimen to the rigidity expected based on a classical elastic analysis using data from
thick specimens, is about 30% for the present polyurethane foam.

For the syntactic foam (Fig. 5), we obtain the following: torsion, G = 1033 MPa,
Ijs = 1.5, N 2 = 0.1, It = 0.065 mm, and a residue of 3.64. The residue under the
assumption of classical elasticity is 11.7. For b~nding, E = 2758 MPa, N 2 = 0.1, ~/"Y

= 1, v = 0.335, Ib = 0.032 mm, and a residue of 8.47. The corresponding residue under
the assumption of classical elasticity is 11.2. As in the case of the polyurethane foam,
these constants are consistent with each other and satisfy the energy constraints given
in [4].

Material linearity was checked by performing experiments at a variety of strain
levels. For strains in the range 2.11-9.08 x 10- 4

, the rigidity varied by 1.2% or
less. Strains'used in the size-effect studies were at the lower end of this range. Maximum
strains used were nearly constant over the full range of specimen sizes since the length
to-diameter ratio was kept constant, as was the angular displacement amplitude.

Viscoelastic behavior of the materials was also examined. Based on dynamic ex
periments at 10 and 0.1 Hz, the torsional rigidity of the polyurethane foam was found
to have a frequency dependence of 3.6% per decade. Creep tests disclosed similar
results. Over 5.6 decades of effective time scale, including the above dynamic results
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and up to 8000 seconds of creep, the rigidity of the polyurethane foam had a time
dependence of 3.7% per decade. Similar experiments done on the syntactic foam dis
closed a time dependence of 2% per decade. Neither material, therefore, exhibited
large viscoelastic effects. All data used for size-effect determinations were taken at 0.1
Hz. This approach etJectively decouples time-dependent effects from the spatial effects
associated with Cosserat elasticity.

4. DISCUSSION

We have observed in the polyurethane foam, nonclassical size effects consistent
with Cosserat elasticity, but inconsistent with classical elasticity. Cosserat elasticity
is one of the simplest of the generalized continuum theories. Others have been devel
oped, however, and we consider their possible applicability to the present results.
Couple stress elasticity, for example [14], may be recopized [15] as a special case of
Cosserat elasticity for which the microrotation is constrained to be equal to the ma
crorotation. This corresponds to N = 1 [15]. In Fig. 4 we observe that values of N
approaching 1 are at variance with the observed behavior of the polyurethane foam at
small diameters, since the theoretical curve for N = 1 for torsion is a straight line
offset from the classical line and intercepting the ordinate[10]. The recent theory of
voids[17, 18] makes use of the change in void volume as a microstructural kinematic
variable. This theory is comparable to Cosserat elasticity in complexity, and it refers
explicitly to structural features of the materials considered here. Void theory predicts
that size effect'l will occur in bending ofbars but not in torsion in an isotropic material.
In the polyurethane foam, size effects occur both in bending and in torsion, therefore
the void theory does not adequately describe this material. It may, however, model
solids with a relatively small fraction of void volume. The potential applicability of
other types of void theory to the present results is yet to be examined. Microstructure
elasticity[3], also called micromorphic elasticity[19], postulates microdeformational de
grees of freedom associated with particles within the solid. Each point can experience
both strain and rotation, which may differ from the macroscopic strain and rotation.
This theory contains both Cosserat elasticity and the theory of voids as special cases.
For the isotropic microstructure-elastic solid there are eighteen independent elastic
constants vs six for a Cosserat solid and two for a classical solid. Very few boundary
value problems have been solved for such solids, and the torsion and bending problems
corresponding to the present experiments have not been solved. Other generalized
continuum theories have been proposed[20, 21], but the boundary-value problems nec
essary for a meaningful comparison with Cosserat elasticity in the present results, have
not been treated. Nevertheless, the adequacy of Cosserat elasticity may be examined
in terms of consistency between bending and torsion results, as described earlier. Fail
ure of a low-density foam to satisfy such a consistency test[l2] led to the conclusion
that Cosserat elasticity described the material only in an approximate sense, and that
other degrees of freedom were present. Longitudinal wave-propagation experiments
were therefore done. The dispersion and cutoff effect which was observed was of the
type expected from micromorphic degrees of freedom. In the case of the present dense
polyurethane foam, the consistency tests are satisfied in support of the Cosserat model.
Other generalized continuum models are not, however, excluded.

Thus far we have considered these materials in light of generalized continuum
theory. A structural view may also be taken. One way this might be done is to construct
a detailed finite-element model, which incorporates all the features of the local archi
tecture. There are so many structural elements, however, that the required mesh would
be orders-of-magnitude larger than the largest which can be handled today[12]. Another
approach is to construct an idealized mathematical model of the structure, set up the
appropriate difference equations, and pass to the limit to obtain differential equations
for a continuum model which contains some of the degrees of freedom of the original
structure. The type of continuum model obtained depends on which structural degrees
of freedom are included in the original model and on the limiting process. For Cosserat
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elastic models of gridworks[22, 23], laminates [24] and honeycombs of cubical cells[25],
it is noted that the characteristic lengths are of the order of the size of the structural
elements. Reference [25] may be regarded as theoretical justification for using a Cos
serat model for a solid with voids. For particulate composites, Le. materials in which
one phase consists of more or less spherical inclusions, the characteristic lengths are
predicted to be zero[26, 27]. Reference [26], due to Hlavacek, is actually a micro
morphic model, however the quantities associated with the rotational (Cosserat) de
grees of freedom are easily recognized in light of [2, 3]. Such particulate materials
would appear to be classically elastic under the present methodology or a similar one.
This prediction may account for the fact that Gauthier and Jahsman[7] observed their
special "micropolar" model material to behave entirely classically. In the present
study, the syntactic foam contains hollow glass microballoons in an epoxy matrix. Since
the glass is much stiffer than the epoxy, these microballoons may behave more like
inclusions than pores in governing the micromechanics; hence the near-elassical be
havior of syntactic foam seen here. Additional evidence of near-classical behavior in
syntactic-type foams was recently obtained by Kinra and Ker[28], who observed very
little velocity dispersion of shear and longitudinal ultrasonic waves in a glass micros
phereIPMMA composite. Dispersion of shear waves is expected to occur in a Cosserat
solid[4] and, in addition, dispersion of longitudinal waves is predicted to occur in a
microstructure/micromorphic solid[3]. The high-density polyurethane foam, by con
trast, does not have a structure which corresponds closely to structures which have
been treated theoretically in terms of generalized continuum mechanics.

Nevertheless, we may compare the present experimental results for polyurethane
foam with theoretical predictions for idealized microstructures. In two-dimensional
lattice structures[22, 23] and in a three-dimensional cubical cellular structure[25], the
characteristic length is predicted to be somewhat smaller than the length scale of the
structural elements. In laminated[27] and fibrous[26] structures, the characteristic
length can be larger than the structural element size, depending on the mechanical
properties ofthe two constituents. The present polyurethane foam is a cellular structure
for which we infer characteristic lengths greater than the size of the dominant structural
elements. Possible causes for this difference between theoretical prediction and ex
perimental observation are as follows: (i) The polyurethane foam has an (isotropic)
texture symmetry rather than the idealized crystal-like lattice symmetry assumed in
the theoretical models. The cell walls are curved rather than straight. The macroscopic
Young's .modulus may therefore be governed by bending of the structural elements
rather than stretching, and thus be lower than expected on the basis of an idealized
structural model. Now the physical origin of Cosserat elastic constants, such as 'Y, is
expected to lie in the bending and twisting rigidity of the structural elements, which
will not change much in the presence of some curvature. Recalling the definition of
characteristic length 1, we argue that 1in real materials will exceed theoretical values
based on idealized structures with straight elements. (ii) A second possibility is that
the polyurethane foam has degrees of freedom in addition to those assumed in the
Cosserat model. If so, these effects do not manifest themselves as internal inconsist
encies in the present interpretation of the material as a Cosserat solid; they would
have to be sought in other types of experiment.

The significance of Cosserat elastic or other nonclassical elastic behavior in materials
is that the stress-concentration factor associated with holes[4, 15] may differ from the
value predicted by classical elasticity. The difference is predicted to be most noticeable
for small holes of a size approaching the characteristic length. Substantial differences
between the predictions of classical and Cosserat elasticity also occur in fracture-me
chanics analyses of stresses near the tip of a crack(29].

5. CONCLUSIONS

Two foam materials have been examined in this study. The dense polyurethane
foam exhibits size effects consistent with an isotropic Cosserat continuum model. A
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self-consistent set of six Cosserat elastic constants is obtained. The Cosserat charac
teristic lengths are comparable to the dimensions of the microstructure. The syntactic
foam also exhibits size effects consistent with an isotropic Cosserat continuum model.
For this material the deviations from classical behavior are small and are comparable
in magnitude to the experimental scatter. The syntactic foam may therefore be regarded
as classical within the limitations of the present experiments.
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